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Objective
We develop a latent variable forest (LV Forest) algorithm for the estimation of
latent variable scores from conditionally causal models with one or more latent vari-
ables. LV Forest establishes conditional causality in structural equation models
(SEM) with ordinal and/or numerical response variables. Through parametric model
restrictions paired with a non-parametric tree-based machine learning approach, LV For-
est estimates latent variables scores that fulfill the main criteria for construct validity.
Latent Variable Scores are used to scale individuals on a single construct (e.g. person-
ality trait or ability). However, a major problem is unfairness and bias of such scores,
especially with respect to social minorities [4]. We tackle these problems through the
estimation valid latent variable scores.

Causality in SEM
Causal relationships are expressed in the form of deterministic, structural relationships.
This means that a set of latent variables ξi is the only immediate cause of Yi.
In reality, however, there is randomness coming from disturbances due to unmodeled
covariates ζi. In SEM, this means:

E(Yi | ξ, ζi) = β′
iξ + ζi, for numerical Yi

P (Yi≥ki | ξ, ζi) = Φ(β′
iξ − αik) + ζi, for categorical Yi

∀ i = 1, . . . ,m k = 1, . . . , l.

Causality is established by three conditions [2]: Firstly, Pseudo isolation means that
no confounding covariate outside the model is associated with the latent variables, such
that Cov(ξ, ζi) = 0. Secondly, Association means the latent variable is associated
with the response variables, such that βi ̸= 0 ∀ i = 1, . . . ,m. Thirdly, Direction of
influence means that the temporal sequence of the variables must be logical. We test
for these causality conditions in LV Forest.
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Algorithm
Step 1: lvforest.train
Result: Trained Model: List of best

terminal nodes from forest
while ntree ≤ forest size do
• Build tree: Partition data set to reduce

parameter heterogeneity [3];
• Exclude subgroups based on:

• model fit
• size of β
• parameter stability [6];

• Save decision rules and parameter
estimates;

end

Step 2: lvforest.predict
Result: Valid Latent Variable Scores
while ntree ≤ forest size after training do

while nnode ≤ no. nodes after training do
• Use subgroups from training to predict

latent variable scores;
• Exclude subgroups based on test for

pseudo-randomization;
end
• Compute mean of LV scores over

remaining nodes;
end

Application
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Contact:
•Email: classe@ihf.bayern.de
•Phone: +49 (0)89 21234-410
•Github: github.com/chkern/lvforest

Discussion
Since tree-based methods have successfully been applied to account for parameter hetero-
geneity [1, 5], we utilized the machine learning perspective for handling complex subgroup
structures in the population. In psychological assessment, bias refers to systematically
under- or overestimating of personality traits or abilities [4]. Especially cultural bias has
been a polarizing issue for many years. The controversy lies in the question whether
differences between specific subgroups are based on real differences in ability levels or
on different cognitive structures requiring different test characteristics, i.e. test bias.
We argue that pseudo-isolation, and therefore causality in SEMs, is only possible
if there are no systematic differences in a latent ability or trait with respect
to variables outside the latent variable model. Thus, if systematic differences
between groups regarding the latent variable are not part of the assumed model, they
are attributable to test bias. Thus, a tool like LV Forest that measures fair and unbiased
scores can serve as an relevant contribution to the discussion about bias in psychological
assessment.
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